Marine Polysaccharide Sulfatases

نویسنده

  • William Helbert
چکیده

Polysaccharides are the most abundant and the most complex organic molecules in the ocean. In contrast to land polysaccharides, many marine polysaccharides are highly sulfated; in particular, the cell walls of macroalgae harbor a high diversity of sulfated polysaccharides (carrageenans, agarans, fucoidans, ulvans, etc.). These sulfated polysaccharides, biosynthesized by macroalgal primary producers, represent an important food source for heterotrophic organisms. Their biodegradation requires a set of enzymes that can cleave the glycosidic linkages of the carbohydrate backbone (called glycoside hydrolases) and the sulfate ester groups (called polysaccharide sulfatases). This review first provides on overview of the current state of knowledge on the classification and mechanisms of sulfatases in general. Then, based on an exploration of marine genomic and metagenomics data that reveals the diversity of carbohydrate sulfatases, it focuses on strategies to predict these sulfatases. In particular, themodularity of sulfatases and their location in marine polysaccharide utilization loci (PUL) provide clues as to their potential substrates and can drive future functional assays. Finally, the review underscores the low number of currently biochemically characterized marine carbohydrate sulfatases (e.g., agarases, carrageenanases, and fucose sulfatases). Bottlenecks encountered in studies on sulfatases likely lie in the difficulties in purifying them and producing them in heterologous systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome sequence of the agar-degrading marine bacterium Alteromonadaceae sp. strain G7.

Here, we present the high-quality draft genome sequence of the agar-degrading marine gammaproteobacterium Alteromonadaceae sp. strain G7, which was isolated from coastal seawater to be utilized as a bioresource for production of agar-derived biofuels. The 3.91-Mb genome contains a number of genes encoding algal polysaccharide-degrading enzymes such as agarases and sulfatases.

متن کامل

Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora

Carrageenans are sulfated polysaccharides extracted from the cell wall of some marine red algae. These polysaccharides are widely used as gelling, stabilizing, and viscosifying agents in the food and pharmaceutical industries. Since the rheological properties of these polysaccharides depend on their sulfate content, we screened several isolated marine bacteria for carrageenan specific sulfatase...

متن کامل

Complete genome sequence of the marine planctomycete

Pirellula sp. strain 1 (‘‘Rhodopirellula baltica’’) is a marine representative of the globally distributed and environmentally important bacterial order Planctomycetales. Here we report the complete genome sequence of a member of this independent phylum. With 7.145 megabases, Pirellula sp. strain 1 has the largest circular bacterial genome sequenced so far. The presence of all genes required fo...

متن کامل

Anti-Vasculogenic Activity of a Polysaccharide Derived from Brittle Star via Inhibition of VEGF, Paxillin and MMP-9

Background: Bioactive compounds such as terpenoids, chondroitin sulfate, and polysaccharides with added value can be found in prestine marine creatures. These compounds often do have highly valuable therapeutic applications such as being antioxidant, antitumorogenic, anti-infl ammatory and anti-angiogenic. For the latter, varieties of angiogenesis factors can suppress this issu...

متن کامل

Proteomic analysis of scallop hepatopancreatic extract provides insights into marine polysaccharide digestion

Marine polysaccharides are used in a variety of applications, and the enzymes that degrade these polysaccharides are of increasing interest. The main food source of herbivorous marine mollusks is seaweed, and several polysaccharide-degrading enzymes have been extracted from mollusk digestive glands (hepatopancreases). Here, we used a comprehensive proteomic approach to examine the hepatopancrea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017